
Low Power Architecture for High Speed

Packet Classification

Alan Kennedy
School of Electronic

Engineering
Dublin City University

Dublin 9, Ireland

alan.kennedy@eeng.dcu.ie

Xiaojun Wang
School of Electronic

Engineering
Dublin City University

Dublin 9, Ireland

xiaojun.wang@dcu.ie

Zhen Liu
School of Electronic

Engineering
Dublin City University

Dublin 9, Ireland

liuzhen@eeng.dcu.ie

Bin Liu
Computer Science and

Technology
Tsinghua University
Beijing P.R.China

liub@tsinghua.edu.cn

ABSTRACT

Today’s routers need to perform packet classification at wire
speed in order to provide critical services such as traffic billing,
priority routing and blocking unwanted Internet traffic. With ever-
increasing ruleset size and line speed, the task of implementing
wire speed packet classification with reduced power consumption
remains difficult. Software approaches are unable to classify
packets at wire speed as line rates reach OC-768, while state of
the art hardware approaches such as TCAM still consume large
amounts of power.

This paper presents a low power architecture for a high speed
packet classifier which can meet OC-768 line rate. The
architecture consists of an adaptive clocking unit which
dynamically changes the clock speed of an energy efficient packet
classifier to match fluctuations in traffic on a router line card. It
achieves this with the help of a scheme developed to keep clock
frequencies at the lowest speed capable of servicing the line card
while reducing frequency switches. The low power architecture
has been tested on OC-48, OC-192 and OC-768 packet traces
created from real life network traces obtained from NLANR while
classifying packets using synthetic rulesets containing up to
25,000 rules. Simulation results of our classifier implemented on
a Cyclone 3 and Stratix 3 FPGA, and as an ASIC show that power
savings of between 17-88% can be achieved, using our adaptive
clocking unit rather than a fixed clock speed.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General Security

and protection (e.g., firewalls); C.2.6 [Internetworking]: Routers

General Terms

Measurement, Performance, Experimentation, Security.

Keywords

Packet Classification, Hardware Accelerator, Frequency Scaling,
Energy Efficient.

1. INTRODUCTION
Packet classification is the process of mapping a packet to one of
a finite set of flows or categories using information from the
packet header. The packet header is matched using longest prefix
matching for the source and destination IP addresses, range
matching for the source and destination ports, and exact or
wildcard matching for the protocol number. Packets belonging to
the same flow match a pre-defined rule and are processed in the
same way by a router line card. The classifier will select the rule
with the highest priority in the case where multiple rules match.
Packet classification is used by networking devices to carry out
advanced Internet services like network security, sophisticated
traffic billing, giving priority to VoIP and IPTV packets, rate
limiting, load balancing and resource reservation.

The increasing number of services that the router needs to provide
means that the number of rules used to separate incoming packets
into appropriate flows has grown from hundreds to thousands of
rules. This growth in ruleset size has further complicated the
problem of packet classification. The problem of packet
classification has been looked at in detail [1-9]. Implementing
packet classification algorithms in software is not feasible when
trying to achieve high speed packet classification [10]. High
throughput algorithms such as RFC [1] are unable to reach OC-
768 or even OC-192 line rates when run on devices such as
general purpose processors for even relatively small sized rulesets.
Packet classification algorithms tailored towards high throughput
also tends to suffer from large memory consumption for rulesets
containing thousands of rules, making them more suitable for
slower DRAM rather than faster SRAM.

These approaches at packet classification seldom consider power
consumption, which is an equally important factor. Key
components on a router line card such as the Intel IXP2800
network processor can consume up to 30 Watts. Each line card on
a router typically contains two network processors for ingress and
egress processing and a router can contain multiple line cards.
Current hardware methods for high speed packet classification
such as Ternary Content Addressable Memory (TCAM) can meet
OC-768 line rate but tend to use large amounts of power. State of
the art low power packet classification devices such as the
Cypress Ayama 10000 Network Search Engine [11] can use up to
19.14 Watts. This is due to the fact that TCAM carries out parallel
comparisons on all the stored rules in one clock cycle. TCAM
also has a poor storage density with one bit requiring 10-12
transistors, compared to 4-6 transistors for more power efficient
SRAM. Another drawback of TCAM is that it can suffer from
poor rule storage efficiency when classifying rules that use range
.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ANCS’08, November 6–7, 2008, San Jose, CA, USA.
Copyright 2008 ACM 978-1-60558-346-4/08/0011…$5.00.

131

Figure 1. Throughput for a sample 24-hour trace taken from CENIC backbone link

matching. This is because rules that use range matching may
require more than one memory slot in order to store a rule.
A search engine implemented using TCAM also has the drawback
of requiring multiple chips including a host ASIC and the
corresponding SRAMs. Improving TCAM power efficiency and
the storage efficiency of rulesets has been well investigated [12-
14] but there is still large room for improvement.

In this paper, we propose a low power architecture for a high
speed packet classifier which could be used as an on-chip
hardware accelerator for a network processor or as an external
chip. This architecture uses an adaptive clocking unit to exploit
the fluctuation in Internet traffic by reducing the clock frequency
during times of low traffic and increasing the clock frequency at
times of high traffic. In order to make the decision of frequency
scaling, the fields of a packet header used for classification are
extracted into a buffer upon its arrival and the queue length is
monitored. The hardware accelerator implements a modified
version of the HiCuts and HyperCuts packet classification
algorithms. Instead of comparing a large number of rules
simultaneously (as is the case with TCAM), the algorithms divide
the hyperspace of the ruleset heuristically into multiple groups so
that each subset contains only a small number of rules that are
suitable for linear search, reducing the unnecessary comparisons
and thus the power consumption. The hardware accelerator
utilizes the flexibility of a FPGA’s block RAM by using SRAM
with long word line to reduce the number of clock cycles needed
to perform a linear search on the selected rules. We present
performance results for our low power architecture implemented
on a Cyclone 3 FPGA with 3,971,072 bits of memory capable of
storing up to 24,000 rules, and on a Stratix 3 FPGA and as an
ASIC, both of which possess 7,915,520 bits of memory capable of
storing up to 49,000 rules.

The rest of the paper is organized as follows: In section 2 we
explain our motivation behind using frequency scaling to reduce
the dynamic power consumption and show our analysis of real life
network traces. Section 3 introduces our scheme for frequency
scaling. In section 4, we represent the HiCut and HyperCut packet
classification algorithms along with the changes made to make
them better suited for hardware acceleration. The architecture for
our low power high speed packet classifier is described in section
5. Section 6 presents the power analysis results of our low power
architecture being used to classify packets at different line rates
using different sized and shaped rulesets. Section 7 concludes.

2. MOTIVATION
The Internet backbone is made up of a large collection of
interconnected commercial and non-commercial high speed data
links. These links are connected by edge and core routers. In the
past OC-48 connections were used as the backbones by many
regional Internet service providers. This corresponds to link
speeds of 2.5 Gb/s which means it is possible to transmit a
maximum of 7.8125 Million packets per second (Mpps) when you
consider the back-to-back arrival of minimum-sized 40-byte
packets. Currently the common commercial network connection
speed is OC-192, which can transmit 10 Gb/s with a maximum
throughput of 31.25 Mpps. With companies like AT&T already
using OC-768 link speeds, it is envisaged that in the near future
these OC-768 connections will become more commonly available,
transmitting 40 Gb/s with a maximum throughput of 125 Mpps.

During peak times such as office hours a router line card may be
kept busier than at other times such as night or public holidays. At
a micro level traffic volume can also fluctuate from second to
second with large peaks and troughs. We analyzed the
characteristics of real life OC-48 and OC-192 traffic traces stored
in the NLANR database [15]. We looked at throughput both in
terms of bits and packets per second. Packet classifiers are more
interested in throughput in terms of packets per second rather than
bits per second. This is because packet classifiers only examine a
packet header and not its payload. Figure 1 shows a 24-hour
recording taken from the Corporation for Education Network
Initiatives in California (CENIC) HPR backbone link [16]. Its
characteristics are typical of all the backbone traces we analyzed,
with the average traffic load varying from hour to hour with many
short bursts in throughput. It can be seen that these short bursts
cause the throughput to fluctuate wildly from second to second
both in terms of bits and packets per second. The traces show that
even during sharp bursts in throughput the 10 Gigabit CENIC
backbone link peaks at 121,801 packets per second and never
reaches its theoretical highest throughput of 32 Mpps. This is due
to the fact that the back-to-back arrival of 40 byte packets is rare.
A breakdown of the packet length distribution can be seen in
Table 1.

Table 1. Statistics from CENIC backbone trace

Packet Length Distribution Number of

Packets

Average

Packet Length 0-200 201 -1400 1401-1600

2,607,169,713 975 bytes 33.56 % 7.03 % 59.41 %

132

Figure 2. Percentage of time classifier spends idle when classifying packets from the CENIC trace at different frequencies

There have been many ideas proposed to reduce power
consumption to a router line card by exploiting the fluctuation in
traffic volume. In [17] clock gating is used to turn off the clock of
unneeded processing engines of multicore network processors to
save dynamic power at times when there is a low traffic workload.
In [18] the more aggressive approach of turning off these
processing engines is used to reduce both dynamic and static
power consumption. Dynamic voltage scaling is used in [19] to
reduce the power consumption of the processing engines on a
network processor. With state of art devices such as the Cypress
Ayama 10000 Network Search Engine using nearly as much
power as that of a programmable network processor, our goal is to
reduce the classifiers power consumption by means of exploiting
the fluctuation in traffic volume to adjust the frequency
dynamically. We do not use clock gating because a router line
card typically does not contain more than one packet classifier.
This means that the packet classifier must be continuously
available for use to prevent packets from being dropped or
unacceptable processing latencies that might be caused by turning
off its clock. Since our experiments use FPGA which is harder for
dynamic voltage scaling to be implemented on and may need
external circuitry to control the voltage level [20], we will leave
this work for the future.

We developed a cycle accurate simulator for our low power
architecture for high speed packet classification in C code and
used it to analyze traffic traces. Figure 2 shows the percentage of
time our packet classifier spent in an idle state when classifying
packets from the CENIC trace at different fixed clock speeds. For
this experiment we replaced the source and destination IP
addresses, the source and destination ports and the protocol
number with header information generated using ClassBench [21]
to match a synthetic ruleset. Our classifier is able to classify a
packet on each clock cycle for the synthetic ruleset used. It can be
seen that for higher clock speeds the packet classifier spends a
large amount of time in an idle state. A large percentage of idle
time means a large amount of unnecessary dynamic power is
being used due to the unnecessary switching of logic and memory
elements. As the packet classifier’s clock speed is reduced to meet
the average throughput of the router, it can be seen that the
percentage of idle time decreases, meaning a reduction in the
amount of unnecessary dynamic power used by the classifier.
Running the packet classifier at a fixed clock speed close to the
average throughput means a large buffer will be required to
accommodate large bursts in throughput. A large buffer would
cancel out the dynamic power saved by the packet classifier and
cause an unacceptable latency in the amount of time it takes to
classify a packet.

It was with these facts in mind that we decided to design an
adaptive clocking unit which would dynamically scale the
frequency of a packet classifier so that it matches fluctuations in
traffic volume. It is possible to reduce the classifiers dynamic
power consumption by running it at low speeds when traffic
volume is low. It is also possible to reduce the buffer size and
therefore its power consumption, by allowing the classifier to
respond to bursts of packets, through increasing its clock
frequency in order to keep the buffer clear.

3. ADAPTIVE CLOCKING ARCHITECTURE
Our adaptive clocking unit uses dual port SRAM to buffer
information from the packet headers. This information includes
the source and destination IP addresses, the source and destination
port numbers and the protocol number, which are read in at a
speed of 128 MHz. This speed is selected to avoid packets being
dropped when the arrival of back-to-back 40-byte packets occur at
OC-768 line speeds resulting in up to 125 Mpps as mentioned
before. The number of packets stored in the buffer is calculated by
monitoring the difference between the read and write addresses of
the buffer. This difference is used as a trigger to determine which
clock frequency the packet classification hardware accelerator
should be run at. The adaptive clocking unit is designed to run a
packet classification hardware accelerator at up to N different
frequencies and in our experiment we have N=10. Each frequency
is generated using a separate Phase Lock Loop (PLL) to eliminate
the need of PLL frequency changing which requires some time to
finish. Dedicated clock switching logic in the FPGA is used to
prevent clock glitches when switching between frequencies.
Before switching to another frequency, we need to put the packet
classifier into an idle state to prevent problems that may be caused
by glitches.

The selection of frequencies that the packet classifier is allowed to
run at can use different schemes. In our experiments, we choose
the following equation:

 fi=Fmax/2N-i-1, i=0, …, N -1 (1)

Where Fmax is the maximum frequency that the classifier can run.
For our packet classifier, it was found that 32 MHz is fast enough
to deal with the worst case bursts of packets for OC-768 line
speeds when using rulesets containing over 20,000 rules with real
life traces. This means that Fmax=32 MHz. In our adaptive
clocking unit, each possible clock frequency corresponds a
different state. Table 2 shows the clock frequencies associated
with each of these states. The entering and exiting of each state is
triggered by the number of packets stored in the buffer. All states
.

Table 2. Clock speed associated with each state

State S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

Speed MHz f0=0.0625 f1=0.125 f2=0.25 f3=0.5 f4=1 f5=2 f6=4 f7=8 f8=16 f9=32

133

Figure 3. Switching sequences with all states used

apart from state SN-1 has a threshold for determining how many
packets can be stored in the buffer before the next higher
frequency is used. This threshold is variable with the number of
packets stored in the buffer distributed among the N states with
each state having a width Wi. The width of each state Wi can be
any number between zero and M (total number of packets the
buffer can store) as long as the following equation is satisfied:

 ∑
−

=

=

1

0

N

i

iWM (2)

The threshold for determining when a state is exited and the next
higher state entered is saved in a register in the adaptive clocking
unit and can be changed at any time. The threshold for each state
is calculated using the following equation:

 ,
0

∑
=

=

i

j

ji WT i=0, …, N -2 (3)

The output clock frequency of the adaptive clocking unit always
starts at the lowest-used frequency of the hardware accelerator and
only changes to the frequency of the next higher-used state if the
number of packets stored in the buffer exceeds its threshold.
There are two conditions for leaving the subsequent states and
thus changing the output clock frequency. The first of these
conditions is that the threshold Ti for the current state Si is
exceeded with the output clock frequency scaling up to the next
higher-used frequency. The second condition is that the number of
packets stored in the buffer reaches zero meaning the output clock
frequency scales down to the lowest-used frequency. This means
that the number of buffer slots that the current state can occupy
before a frequency change is equal to the sum of the buffer slots
occupied by the previous states plus the number of slots assigned
to the current state itself. This is done to allow larger fluctuations
in the number of packets stored in the buffer without unnecessary
frequency drops. It also keeps the latency time of processing a
packet to a minimum, by trying to clear the buffer before reducing
the clock frequency. The clock frequency of the packet
classification hardware accelerator remains fixed if all buffer slots
are occupied by one state.

In the example shown in Figure 3 the buffers slots are distributed
equally among all states. The output clock frequency to the packet
classification hardware accelerator will start at the frequency of
the lowest-used state f0. If the threshold for this state T0 is
exceeded (i.e. the buffer slots assigned to state S0 have been filled)
then the next higher-used state S1 will be entered and the clock
frequency will change to f1. The output clock frequency will
remain at f1 until the number of packets stored in the buffer is
reduced to zero, returning the output clock frequency to f0, or the
threshold T1 is exceeded in which case the output clock frequency
changes to f2. The same is true for all subsequent states. The
output clock frequency will remain at f2 until either all packets in
the buffer are cleared returning the output clock frequency to f0, or
the maximum threshold T2 is exceeded, meaning state S3 is
entered and the output clock frequency changes to f3.

Figure 4. Switching sequences with selected states used

Figure 4 shows an example where only states S4, S7, S8 and S9 are
used. In this case the output clock frequency to the packet
classifier will start at f4. It will stay at f4 until the threshold T4 is
exceeded, increasing the clock frequency to f7. The output clock
frequency will stay at f7 until all packets in the buffer have been
cleared, returning the output frequency to f4, or the threshold T7 is
exceeded, increasing the output frequency to f8. The same
procedure is followed for states S8 and S9.

4. HARDWARE ACCELERATOR
The hardware accelerator has been developed to run modified
versions of the HiCut and HyperCut packet classification
algorithms. This section starts by first explaining the HiCut and
HyperCut algorithms and then explains the modifications made to
them in order to make them better suited to hardware acceleration.

4.1 Hierarchical Intelligent Cuttings (HiCut)
HiCuts by Gupta and McKeown [2] is a decision-based tree
algorithm, which allows incremental updates to a ruleset. It takes
a geometric view of packet classification by considering each rule
in a ruleset as a hypercube in hyperspace defined by the F fields
of a packet header. The algorithm constructs the decision tree by
recursively cutting the hyperspace one dimension at a time into
sub regions. These sub regions will contain the rules whose
hypercube overlap. Each cut along a dimension will increase the
number of sub regions with each sub region containing fewer
rules. The algorithm will keep cutting into the hyperspace until
none of the sub regions exceed a predetermined number called
binth. The number of cuts np which can be performed on a
dimension at an internal node i is limited using a predefined
variable known as spfac in order to prevent the decision tree
becoming too fat causing a memory explosion. Each cut creates a
child node, with the number of cuts always starting with 2 and
doubling each time the following equation is satisfied:

 spfac*number of rules at i ≤ ∑ rules at each child of i + np (4)

One method used for deciding the dimension to cut is to record
the largest number of rules contained in a child after cutting each
dimension and pick the dimension that returns the smallest
number. Each time a packet arrives, the tree is traversed from the
root node until a leaf node is found, which stores a small number
of rules limited by the binth value. Once a leaf node is reached a
small linear search of the rules contained within it is performed to
find the matching rule. An example decision tree is shown in
Figure 5 (A).

4.2 Multidimensional Cutting (HyperCuts)
HyperCuts by Singh et al [3] is a modification of the HiCuts
algorithm, which also allows incremental updates. The main
difference from HiCuts is that HyperCuts recursively cuts the
hyperspace into sub regions by performing cuts on multiple
dimensions at a time. The algorithm chooses dimensions for
cutting at an internal node by calculating the mean number of
.

134

Figure 5. Example decision trees with an ellipse denoting an

internal node and a rectangle denoting a leaf node

distinct range specifications for all dimensions and choosing the
dimensions whose number of distinct range specifications is
greater than or equal to the mean number of range specifications.
The algorithm also limits the number of cuts which can be
performed to an internal node i using a space measure function in
order to prevent memory explosion. The maximum number of
child nodes created by the combination of cuts between the
chosen dimensions is bound by the following condition:

 max child nodes at i ≤ spfac*sqrt(number of rules at i) (5)

The combination of cuts between the chosen dimensions which
result in the smallest number of max rules stored in a child node is
used. HyperCuts takes advantage of extra heuristics when
building the search structure. One of these is region compaction
which allows for more efficient cutting of a dimension by only
cutting the region covered by the rules rather than the full region.
Another is pushing common rule subsets upwards to reduce the
replicated storage of rules by storing rules common to all child
nodes in their parent node. HyperCuts and HiCuts reduce storage
further by merging child nodes which have associated with them
the same set of rules and removing child nodes which contain no
rules. An example decision tree is shown in Figure 5 (B).

4.3 Algorithmic Changes
In order to make the algorithms better suited to hardware
acceleration and consume less power during the building of the
search structure, some modifications were made. The first
modification was to remove the region compaction and push
common rule subsets upwards heuristics from the HyperCuts
algorithm. The region compaction heuristic was removed as it
needed large amounts of hardware resources in order to carry out
the floating point division required when calculating which path
to follow when traversing the decision tree. Floating point
division would also consume extra power. Pushing common rule
subsets upwards was removed as it meant the searching of rules
would have to be carried out while traversing the decision tree,
slowing down the hardware accelerator.

The number of cuts allowed to internal nodes for both the
HighCut and HyperCut algorithms is limited to 32, 64, 128 or 256
cuts. It was found through the testing of different size and shaped
rulesets generated using ClassBench that 32 cuts is a much better
starting position than 2, as it leads to a significant decrease in
computation and causes an insignificant increase to memory
consumption. It was also found that by capping the number of
cuts to 256, savings are made in memory consumption and

computation, with little decrease in throughput. Reducing the
amount of computation will lead to power savings as less time is
spent building the search structure. For HiCuts the number of cuts
to an internal node starts at 32 and doubles each time the
following condition is met:

(spfac*number of rules at i ≤ ∑ rules at each child of i + np)

 &(np<129) (6)

HyperCuts considers dimensions for cutting with a number of
distinct range specifications greater than or equal to the mean
number of distinct range specifications for all the five dimensions.
All combination of cuts between the chosen dimensions are
considered if they obey the following condition where spfac can
be 1, 2, 3 or 4:

 (np≤2(4+spfac))&(np≥32) (7)

Capping the number of cuts to 256 also makes the algorithms
better suited to hardware acceleration as all the information
needed for an internal node can fit fully in one memory word,
which can be accessed in a single clock cycle. Each of the cuts to
an internal node requires 10 bits for the address location of the
node in the search structure and 6 further bits for indicating the
node type. A number between 0 and 47 for these 6 bits means that
the node is a leaf node and gives the starting position for this node
on the memory word at its address location, while a number other
than this indicates the node is an internal node.

In order to calculate which cut the packet should traverse to, the
internal node stores 8-bit mask and shift values for each
dimension. The masks indicate how many cuts are to be made to
each dimension, while the shift values indicate each dimension’s
weight. The cut to be chosen is calculated by ANDing the mask
values with the corresponding 8 most significant bits from each of
the packet’s 5 dimensions. The resulting values for each
dimension are shifted by the shift values with the results added
together giving the cut to be selected.

Another modification made is to store the actual rule in the leaf
node rather than a pointer. This was found during testing of the
many rulesets created using ClassBench to have only a small
increase in memory consumption for a large increase in
throughput as data is presented to the hardware accelerator one
clock cycle earlier. Each saved rule uses 160 bits of memory. The
Destination and Source Ports use 32 bits each with 16 bits used
for the min and max range values. The Source and Destination IP
addresses use 35 bits each with 32 bits used to store the address
and 3 bits for the mask. The storage requirement for the mask has
been reduced from 6 to 3 bits by encoding the mask and storing 3
bits of the encoded mask value in the 3 least significant bits of the
IP address when the mask is 0-27. The protocol number uses 9
bits with 8 bits used to store the number and 1 bit for the mask.
The rule number uses 17 bits. Each 7704-bit memory word can
hold up to 48 rules, and it is possible to perform a parallel search
of these rules in one clock cycle.

In order to reduce memory consumption the nodes are rearranged
after the search structure has been built. All the internal nodes are
stored first followed by the leaf nodes. This modification means
that the leaf nodes can be saved contiguously in the search
structure, improving the storage efficiency of rules. To locate a
leaf node the number of the memory word where it is located and
the starting position of the leaf node within that memory word is
.

RR00

RR22

RR44

Field 0 (2 cuts)

Field 4 (2 cuts)

RR00

RR11

RR00

RR33

 Field 0 (2 cuts)
 Field 4 (2 cuts)

RR00

RR11

RR00

RR33

RR00

RR22

RR00

RR44

(A) HiCuts decision tree (B) HyperCuts decision tree

135

Table 3. Search structures generated using the modified

HyperCuts algorithm for ACL1, FW1 and IPC1 rulesets

generated using ClassBench (memory=bytes)

Rules spfac binth speed cycles memory

Search Structures Built For Cyclone 3

ACL5000 4 96 1 3 130,005

ACL10000 4 96 1 3 286,011

ACL15000 4 96 1 3 440,091

ACL20000 3 192 1 5 486,315

Search Structures Built For ASIC and Stratix 3

ACL5000 4 96 1 3 130,005

ACL10000 4 96 1 3 286,011

ACL15000 4 96 1 3 440,091

ACL20000 4 144 1 4 495,945

ACL24920 4 144 1 4 641,358

Search Structures Built For Cyclone 3

FW5000 4 48 1 2 125,190

FW10000 4 192 1 5 490,167

FW15000 2 336 0 9 478,611

FW20000 1 1,008 0 23 483,426

Search Structures Built For ASIC and Stratix 3

FW5000 4 48 1 2 125,190

FW10000 4 96 1 3 687,582

FW15000 4 192 1 5 984,186

FW20000 4 288 0 8 980,334

FW23087 3 384 1 9 874,404

Search Structures Built For Cyclone 3

IPC5000 4 96 1 3 127,116

IPC10000 4 96 1 3 248,454

IPC15000 4 96 1 3 483,426

IPC20000 3 192 1 5 461,277

Search Structures Built For ASIC and Stratix 3

IPC5000 4 96 1 3 127,116

IPC10000 4 96 1 3 248,454

IPC15000 4 96 1 3 483,426

IPC20000 4 144 1 4 519,057

IPC24274 4 144 1 4 612,468

needed. Both the HiCut and HyperCut algorithms use parameters
known as spfac and binth to trade off throughput against memory
consumption. A third parameter we use to trade throughput
against memory consumption is called speed. When the speed
parameter is set to 0 the leaf nodes are stored contiguously. This
means that the search structure is saved in the most memory
efficient way possible but will not result in the highest possible
throughput as the number of clock cycles needed to classify a
packet will be:

  xposzcycles +++= 1)48/)((where: 0 ≤ pos ≤ 47, z ≥ 0 (8)

Where the number of internal nodes traversed to reach the leaf
node is represented by x. The starting position of the leaf node in
a memory word is represented by pos and z is the position of the
matching rule in the leaf node. If the speed parameter is set to 1 a
leaf node is only stored in a memory word with a staring position
greater than 0 if:

 RulesStoredInLeaf+pos≤48 (9)

This means that there may be reduced storage efficiency as the
leaf nodes may no longer be stored contiguously. Reduced storage

efficiency will, however, lead to an increase in throughput as the
number of cycles needed to classify a packet will now be:

   xzcycles ++= 1)48/((10)

Table 3 shows the memory consumption and worst-case number
of clock cycles needed to classify a packet for search structures
built using HyperCuts. The rulesets used for generating these
search structures were ACL1, FW1 and IPC1 rulesets generated
using ClassBench. The spfac, binth and speed parameters used for
generating the search structures are also shown. The hardware
accelerator has been implemented on a Cyclone 3 FPGA using
496,384 bytes of memory. This includes the 493,056 bytes for the
search structure which uses 512 memory words which are 7,704
bits wide each consuming 428 memory blocks. It also includes
3,328 bytes used for the buffer, which consists of 256 memory
words that are 104 bits wide each consuming 3 memory blocks.
The hardware accelerator has also been implemented on a Stratix
3 FPGA and as an ASIC using 989,440 bytes of memory. For
these devices the memory used for the buffer remains the same
while the search structure memory has been doubled from 512
memory words to 1024.

In Table 3 the same rulesets have been used for building the
search structures for all 3 devices. It can be seen that the amount
of memory available can have a big effect on the worst-case
number of clock cycles needed to classify a packet for the FW1
rulesets. The FW1 ruleset with 20,000 rules needs, for example, at
worst 23 clock cycles to classify a packet when 493,056 bytes of
memory are available for the search structure using the Cyclone 3.
This figure is reduced to 8 clock cycles when the amount of
memory available for the search structure is doubled using an
ASIC or Stratix 3. The available memory does not have such a
large affect on the ACL1 or IPC1 rulesets.

5. LOW POWER ARCHITECTURE
The hardware accelerator has been designed to traverse an internal
node of the decision tree and do a parallel comparison of up to 48
rules contained in a leaf node in 1 clock cycle. This is possible
due to the fact the hardware accelerator can access a 7704-bit
memory word every clock cycle. By storing the decision tree root
node information in a register separate from main memory, it is
possible to traverse the root node for an incoming packet while
searching a leaf node for the previous packet. Carrying out these
tasks in parallel has the effect of reducing the worst-case number
of clock cycles by 1. This means that the hardware accelerator is
able to classify a packet every clock cycle if the worst-case
number of clock cycles needed to classify a packet is 2.

Before any packets can be classified by the hardware accelerator,
the first step is to save the preprocessed search structure to
memory. The hardware accelerator’s memory structure consists of
107 memory cells which are 72-bits wide each. The search
structure is saved using 72-bit memory words, which are first
loaded to the buffer where they are then read by the hardware
accelerator. A write enable signal is used for selecting which
memory cell is to be written to, while a write address is saved into
the buffer with each memory word. The write address selects
which line of the selected memory cell the memory word is to be
written to. The clock speed for the hardware accelerator is fixed at
32 MHz when the search structure is being saved in order to save
it as quickly as possible.

136

Figure 6. Low power architecture for high speed packet classification

Figure 6 shows the low power architecture for high speed packet
classification. Once the Reset pin is placed low, the hardware
accelerator transfers the decision tree’s root node information
from main memory to Reg A in 1 clock cycle. As explained in
section 4.3, this information includes the starting position,
memory location and node type for each of the root’s child nodes.
It also includes the 8-bit mask and shift values for each dimension
used for selecting which child the incoming packet should go to.
On the next rising clock edge the hardware accelerator begins
scanning the Start signal from the adaptive clocking unit, which
will be high if there are packets stored in the buffer. The hardware
accelerator places a Ready signal high when this Start signal is
high to read in a new packet from the buffer to be classified. An
index value for each dimension is created by ANDing the five 8-
bit mask values stored in Reg A with the 8 most significant bits
from the packet’s 5 dimensions read from the buffer. The resulting
indexes are shifted using the 8-bit shift values stored in Reg A and
then added together to determine which node address should be
selected from Reg A. This node address is used to select which
memory word should be loaded from main memory on the next
rising clock edge. On this edge the hardware accelerator checks if
the node to be loaded from main memory is an internal or leaf
node.

If the node loaded from main memory is an internal node then the
hardware accelerator will use the internal node information loaded
to traverse to the next node. The mask values from the internal
node loaded are ANDed with the packet values from the buffer.
These values are shifted using the shift values from the internal
node loaded and then added together. The result is used to
determine which child node should be loaded from main memory
on the next rising clock edge. If the selected child is still an
internal node, then the process of traversing the internal nodes is
repeated until a leaf node is found. Each internal node to be
traversed takes 1 clock cycle.

The packet value loaded from the buffer will be transferred to Reg
B if the node loaded from main memory on a rising clock edge is

a leaf. The accelerator then uses 48 comparator blocks in parallel
to compare the packet value in Reg B with the leaf node’s rule
information loaded from main memory. While this compare takes
place the Start signal is again monitored, and if high will cause
the Ready signal to go high, loading a new packet to be classified.
The mask and index values for the root node stored in Reg A are
used with the packet value loaded from the buffer, to determine
which child node should be loaded from main memory once a
matching rule has been found for the previous packet.

On the next rising clock edge the hardware accelerator checks if a
matching rule has been found. The hardware accelerator will
continue searching the leaf node if a matching rule has not been
found. If a match has been found then the hardware accelerator
checks to see if a packet has been loaded from the buffer. If a
packet has not been loaded, then the hardware accelerator will
continue monitoring the Start signal until it goes high. If a packet
has been loaded, the hardware accelerator will check if the child
node traversed to is an internal node or a leaf node. An internal
node will mean repeating the process of searching for a leaf node,
while a leaf node will mean repeating the process of searching for
a matching rule.

6. SIMULATION RESULTS
The low power architecture for high speed packet classification
was implemented in VHDL and targeted at three devices: a
Cyclone EP3C120F484C8 FPGA which is built on Taiwan
Semiconductor Manufacturing Company's (TSMC's) 65-nm
process technology running at 1.2 Volts, a Stratix
EP3SE260F1152C47 FPGA also built on TSMC’s 65nm
technology running at 0.9 Volts and a 65nm ASIC library by
TSMC running at 1.08 Volts. The low power architecture was
synthesized using Altera’s Quartus 2 software for both the
Cyclone 3 and Stratix 3 FPGA implementations. Post place and
route timing analysis showed that timing requirements were made
for the architecture implemented on both devices. The adaptive
clocking unit met its timing requirement of 128 MHz and the
.

137

Table 4. FPGA Resource Utilization

System A System B
Device

Logic Cells M9K RAMS Logic Cells M9K RAMS

Cyclone 3 18.2% 99.8% 17.9% 99.8%

Stratix 3 5.9% 99.4% 5.8% 99.4%

hardware accelerator met its timing requirement of 32 MHz. Post
place and route simulations were carried out using the Quartus 2
PowerPlay Power Analyzer Tool using VCD files generated by
ModelSim. The results are explained in section 6.1.

For the ASIC solution the logic for the low power architecture
was synthesized using Synopsys software. Post place and route
timing analysis showed that the timing requirements for both the
adaptive clocking logic and hardware accelerator logic were met.
In order to estimate the power consumption for the logic the
Synopsys Prime Power tool was used to analyze the annotated
switching information from VCD files generated using ModelSim.
Due to licensing issues the 65nm TSMC RAM compilers were not
available for measuring the power consumed by memory. Instead
we used the power results from RAM compilers obtained from
Chartered Semiconductor manufacturing. These dual and single
port RAM compilers use 130nm process technology running at
1.2 Volts. To normalize the power results for the RAM so that
they were the same as the 65nm process technology running at
1.08 Volts used for the logic we used the following equation [22]
where S is the scaling factor of the process technology and U is
the scaling factor of the voltage:

 P' = P * S2 * U (11)

6.1 Power Results
In order to measure the power saved when using our adaptive
clocking unit on our energy efficient packet classification
hardware accelerator, we implemented two systems. System A
used the adaptive clocking unit to run the hardware accelerator at
speeds to match the traffic volume while buffering the incoming
packets at a frequency of 128 MHz. It uses the same architecture
described in Figure 6. System B ran the hardware accelerator at a
fixed clock speed of 32 MHz while buffering the incoming
packets at 128 MHz. It used the architecture shown in Figure 6
without Reg 1, the clocking unit and the comparator logic used for
deciding the appropriate clock frequency. Power simulations were
run for both systems implemented on the Cyclone and Stratix
FPGAs and as an ASIC using the PowerPlay Power Analyzer and
Prime Power tools. The resource utilization for the systems
implemented on the Cyclone and Stratix 3 FPGAs can be seen in
Table 4.

The simulation conditions for both systems are identical with
packets read in at rates of 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125 and
0.0625 Mpps. The search structure used needed at worst 2 clock
cycles to classify a packet. This meant a packet was classified on
each clock cycle when reading in 32 Mpps. The power
consumption for the two systems implemented on the three
technologies can be seen in Figures 7, 8 and 9. The power figures
for system A are shown on the right for each packet speed and
system B on the left. Looking at Figure 7 it can be seen that
system A with the adaptive clocking uses 0.25% more power than
system B with the fixed clock speed when implemented as an
ASIC while classifying 32 Mpps. This is due to the extra logic
used for the frequency scaling. It can be seen that system A shows.

0

10

20

30

40

50

60

 32M 16M 8M 4M 2M 1M 0.5M 0.25M 0.125M 0.0625M

Millions of Packets per Second

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 i
n

 m
W

Buffer Logic Memory

Figure 7. Power figures for ASIC implementation

0

50

100

150

200

250

300

350

400

 32M 16M 8M 4M 2M 1M 0.5M 0.25M 0.125M 0.0625M

Millions of Packets per Second

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 i
n

 m
W

Static I/O Dynamic

Figure 8. Power figures for Cyclone 3 implementation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 32M 16M 8M 4M 2M 1M 0.5M 0.25M 0.125M 0.0625M

Millions of Packets per Second

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 i
n

 m
W

Static I/O Dynamic

Figure 9. Power figures for Stratix 3 implementation

power savings of 89% when the packet speed drops to 0.0625
Mpps. The ASIC implementation shows good power savings, as
most of the power consumed is dynamic rather than static.

Figure 8 shows power figures for the Cyclone 3 and it can be seen
that system A with the adaptive clocking uses 0.7% more power
than system B with the fixed clock speed when there are 32 Mpps.
This is due to the fact system A uses 0.3% more of the Cyclone 3
logic resources to implement frequency scaling. System A shows
power savings of 57.16% when the packet speed drops down to
0.0625 Mpps. The Cyclone 3 implementation shows lower power
savings than the ASIC implementation due to the fact the FPGA
has a larger percentage of its power consumption due to static
power than the ASIC.

Finally Figure 9 shows the power results for the Stratix 3. When
classifying 32 Mpps it can be seen that the power consumed by
system A and B are almost identical, as system A only uses an
extra 0.1% of the Stratix 3 logic resources to implement frequency
scaling. System A shows power savings of 19% when the packet
speed drops to 0.0625 Mpps. It can be seen that the power
consumption is much higher for the Stratix than the Cyclone
FPGA. This is because the classifier implemented on the Stratix
uses double the memory of the classifier implemented on the
Cyclone. The Stratix also has much more logic and memory
resources available, leading to a larger amount of static power
consumption. This large amount of static power is why the Stratix
shows poorer reductions in power consumption.

138

Figure 10. Throughput in Packets per Second and Gigabits per Second for the OC-48, OC-192 and OC-768 traces created

6.2 Analysis on Real Life Network Traces
In order to fully test our packet classifier, we created synthetic
OC-48, OC-192 and OC-768 packet traces by aggregating
Abilene, CENIC, and SCO4 backbone packet traces until peak
line rates of 2.5, 10 and 40 Gb/s were reached. The traces
generated are shown in Figure 10. The OC-48 and OC-192 traces
were looked at over a 6000 second period. When creating the OC-
768 trace the timestamps were compressed from a period of 6000
down to 2000 seconds to increase the traffic volume. The peak
number of packets per second for the traces generated is 143,768
p/s for the OC-48 trace, 661,526 p/s for the OC-192 trace and
3,302,488 p/s for the OC-768 trace.

To measure the power savings made by frequency scaling we used
the cycle accurate simulator we developed for our low power
architecture for high speed packet classification. The simulator
used the power figures shown in Figures 7, 8 and 9 which were
measured using the Prime Power and PowerPlay power analysis
tools. The OC-48, OC-192 and OC-768 traces were run on the
simulator while classifying rules using the ACL1, FW1 and IPC1
search structures built for the three devices. Details of these
search structures are shown in Table 3. We spliced the time
stamps from the three network traces to the packets used by the
ACL1, FW1 and IPC1 rulesets generated using ClassBench.

Due to space limitations it is not possible to show all results
measured. Figures 11, 12 and 13 show results for the ASIC,
Cyclone 3 and Stratix 3 implementations classifying packets for
the OC-48, OC-192 and OC768 traces using the search structures
built for the ACL1, FW1 and IPC1 rulesets containing 20,000
rules. The results for system A with the frequency scaling
described in section 6.1 are shown on the right while the results of
system B using a fixed clock speed are shown on the left. The
results shown in these three figures are similar to the results
obtained for the other rulesets. Looking at the results for ASIC
implementation, it can be seen that power savings as high as
88.8% were recorded for the OC-48 trace using the ACL1 and
.

0

10

20

30

40

50

60

 ACL1

OC-48

 FW1

OC-48

 IPC1

OC-48

 ACL1

OC-192

 FW1

OC-192

 IPC1

OC-192

 ACL1

OC-768

 FW1

OC-768

 IPC1

OC-768

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 i
n

 m
W

Fixed Adaptive

Figure 11. ASIC implementation classifying network traces

using rulesets containing 20,000 rules

0

50

100

150

200

250

300

350

 ACL1

OC-48

 FW1

OC-48

 IPC1

OC-48

 ACL1

OC-192

 FW1

OC-192

 IPC1

OC-192

 ACL1

OC-768

 FW1

OC-768

 IPC1

OC-768

P
o

w
e
r

c
o

n
s

u
m

p
ti

o
n

 i
n

 m
w

Fixed Adaptive

Figure 12. Cyclone 3 implementation classifying network

traces using rulesets containing 20,000 rules

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 ACL1

OC-48

 FW1

OC-48

 IPC1

OC-48

 ACL1

OC-192

 FW1

OC-192

 IPC1

OC-192

 ACL1

OC-768

 FW1

OC-768

 IPC1

OC-768

P
o

w
e
r

c
o

n
s
u

m
p

ti
o

n
 i
n

 m
W

Fixed Adaptive

Figure 13. Stratix 3 implementation classifying network traces

using rulesets containing 20,000 rules

139

IPC1 rulesets. The lowest power saving recorded was for the OC-
768 trace using the FW1 ruleset with power savings of 64.46%.
The Cyclone 3 results show a best-case power saving of 57% for
the traces tested and a worst-case saving of 31.2%. For the Stratix
3 a best-case power saving of 19% was recorded and a worst-case
saving of 14.2%. These results show that the adaptive clocking
unit achieves large power savings on all network traces for even
large rulesets when compared to a fixed clock rate.

7. Conclusion
In this paper we have presented a low power architecture for a
high speed packet classifier capable of meeting OC-768 line speed
for rulesets containing up to 49,000 rules. The architecture
presented has been tested while classifying packets at line speeds
of up to OC-768 using ACL1, FW1 and IPC1 rulesets. Simulation
results show that ASIC and FPGA implementations of our low
power architecture can reduce power consumption by between 17-
88% by adjusting the frequency of an energy efficient hardware
accelerator to match the traffic volume on a router line card.

The architecture would be ideally suited to implementation as an
on-chip hardware accelerator, relieving the burden from a
programmable network processor’s processing engines, or as an
off-chip high speed classifier on a router line card. The
architecture consists of an adaptive clocking unit and a low power
hardware accelerator which implements modified versions of the
HiCuts and HyperCuts algorithms. The low power hardware
accelerator uses SRAM rather than TCAM in order to reduce
power consumption.

8. ACKNOWLEDGMENTS
This work was co-funded by the Irish Research Council for
Science, Engineering and Technology, funded by the National
Development Plan, the China/Ireland Science and Technology
Collaboration Research Fund (2006DFA11170), NSFC
(60573121, 60625201), and the Cultivation Fund of the Key
Scientific and Technical Innovation Project, MoE, China
(705003).

9. REFERENCES
[1] P. Gupta and N. McKeown, “Packet classification on

multiple fields,” in ACM SIGCOMM 1999, pp.147-160

[2] P. Gupta and N. McKeown, “Packet classification using
hierarchical intelligent cuttings,” IEEE Micro, vol.20, no. 1,
pp. 34-41, 2000.

[3] S. Singh, F. Baboescu, G. Varghese and J. Wang, “Packet
Classification Using Multidimensional Cutting” in ACM

SIGCOMM, 2003, pp.213-214

[4] F. Baboescu and G. Varghese, “Scalable packet
classification,” IEEE/ACM Trans. Netw., vol. 13, no. 1 pp. 2-
14, 2005.

[5] F. Baboescu, S. Singh, and G. Varghese, “Packet
classification for core routers: Is there an alternative to
CAMs?” in IEEE INFOCOM, 2003, pp. 53-63.

[6] V. Srinivasan, S. Suri, and G. Varghese, “Packet
Classification using Tuple Space Search” in ACM

SIGCOMM 1999, pp. 135-146.

[7] P. Gupta and N. McKeown, “Algorithms for packet
classification,” IEEE Network Mag., vol. 15, no. 2, pp.24-32,
2001.

[8] T. Woo, “A modular approach to packet classification:
algorithms and results,” in IEEE INFOCOM, Mar. 2000, pp.
1213-1222.

[9] P. C. Wang, C. T. Chan, C. L. Lee and H. Y. Chang
“Scalable Packet Classification for Enabling Internet
Differentiated Services” IEEE Trans. on Multimedia, vol. 8,
no. 6, pp. 1239-1249, 2006.

[10] A. Kennedy, D. Bermingham, X. Wang, B. Liu. “Power
Analysis of Packet Classification on Programmable Network
Processors”. 2007 IEEE Intl Conf on Signal Processing and

Communications, Dubai, 24-27 Nov, pp.1231-1234.

[11] Cypress Ayama 10000 Network Search Engine,
http://download.cypress.com.edgesuite.net/design_resources/
datasheets/contents/cynse10256_8.pdf

[12] K. Zheng, H. Che, Z. Wang, B. Liu, X. Zhang, “DPPC-RE:
TCAM-Based Distributed Parallel Packet Classification with
Range Encoding,” IEEE Transactions on Computers, vol.
55, no. 8, pp. 947-961, Aug., 2006.

[13] E. Spitznagel, D. Taylor, and J. Turner, “Packet
Classification Using Extended TCAMs,” Proc. 11th Int’l

Conf. Network Protocol (ICNP ’03), 2003.

[14] D. Pao, Y Keung Li, P Zhou, “An encoding scheme for
TCAM-based packet classification” Advanced

Communication Technology, Feb. 2006.

[15] Passive Measurement and Analysis Project, National
Labority for Applied Network Research. http://pma.nlanr.net

[16] Corporation for Education Network Initiatives in California
trace ftp://pma.nlanr.net/traces/long/cnic/1/

[17] Y. Luo, J. Yu, J.Yang, L. N. Bhuyan, “Conserving network
processor power consumption by exploiting traffic
variability”, ACM Trans. Archit. Code Optim. 4, 1 (Mar.
2007)

[18] Ravi Kokku, Upendra B. Shevade, Nishit S. Shah, Mike
Dahlin, Harrick M. Vin “Energy- Efficient Packet
Processing”, www.cs.utexas.edu/users/dahlin/papers/
packet-power-feb2004.pdf

[19] Yan Luo, Jun Yang, Laxmi Bhuyan, Li Zhao, “NePSim: A
Network Processor Simulator with Power Evaluation
Framework”, IEEE Micro Special Issue on Network

Processors for Future High-End Systems and Applications,
Sept/Oct 2004.

[20] C. T. Chow, L. S. M. Tsui, P. H. W. Leong, W. Luk, S.
Wilton, “Dynamic voltage scaling for commercial FPGAs” ,
IEEE International Conference on Field Programmable

Technology, December, 2005

[21] D. Hoffman and P. Strooper, “Classbench: A Framework for
Automated Class Testing,” Software Practice and

Experience, vol. 27, no. 5, pp. 573-597, May 1997.

[22] A. Kinane, “Energy Efficient Hardware Acceleration of
Multimedia Processing Tools” PhD thesis, Dublin City

University, May 2006.

140

